General Interpolating Sequences for the Bergman Spaces
نویسنده
چکیده
Most characterizations of interpolating sequences for Bergman spaces include the condition that the sequence be uniformly discrete in the hyperbolic metric. We show that if the notion of interpolation is suitably generalized, two of these characterizations remain valid without that condition. The general interpolation we consider here includes the usual simple interpolation and multiple interpolation as special cases.
منابع مشابه
Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کاملDouble Integral Characterization for Bergman Spaces
‎In this paper we characterize Bergman spaces with‎ ‎respect to double integral of the functions $|f(z)‎ ‎-f(w)|/|z-w|$,‎ ‎$|f(z)‎ -‎f(w)|/rho(z,w)$ and $|f(z)‎ ‎-f(w)|/beta(z,w)$,‎ ‎where $rho$ and $beta$ are the pseudo-hyperbolic and hyperbolic metrics‎. ‎We prove some necessary and sufficient conditions that implies a function to be...
متن کاملCarleson Measures for the Drury-Arveson Hardy space and other Besov-Sobolev Spaces on Complex Balls
on the associated Bergman tree Tn. Combined with recent results about interpolating sequences this leads, for this range of σ, to a characterization of universal interpolating sequences for B 2 and also for its multiplier algebra. However, the tree condition is not necessary for a measure to be a Carleson measure for the Drury-Arveson Hardy space H n = B 1/2 2 . We show that μ is a Carleson mea...
متن کاملA Carleson-type Condition for Interpolation in Bergman Spaces
An analogue of the notion of uniformly separated sequences, expressed in terms of canonical divisors, is shown to yield a necessary and sufficient condition for interpolation in the Bergman space Ap, 0 < p < ∞. A sequence Γ = {zj} of distinct points in the open unit disk D = {z : |z| < 1} of the complex plane is a classical interpolation sequence if for every bounded sequence {aj}, there is a b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009